
INTRODUCTION

Proteins require specific three-dimensional conforma-
tions to function properly. These “native” conforma-
tions result primarily from intramolecular interactions
between the atoms in the macromolecule, and also
intermolecular interactions between the macromole-
cule and the surrounding solvent. Although the folding
process can be quite complex, the instructions guiding
this process are specified by the one-dimensional pri-
mary sequence of the protein or nucleic acid: external
factors, such as helper (chaperone) proteins, present at
the time of folding have no effect on the final state of
the protein. Many denatured proteins spontaneously
refold into functional conformations once denaturing
conditions are removed. Indeed, the existence of a
unique native conformation, in which residues distant
in sequence but close in proximity exhibit a densely
packed hydrophobic core, suggests that this three-
dimensional structure is largely encoded within the
sequential arrangement of these specific amino acids.
In any case, the native structure is often the conforma-
tion at the global minimum energy (see [1]).

In addition to the unique native (minimum energy)
structure, other less stable structures exist as well,
each with a corresponding potential energy. These
structures, in conjunction with the native structure,
make up an energy landscape that can be used to char-
acterize various properties of the protein.

Over 20 years of research into this “protein folding
problem” has resulted in numerous important algo-
rithms that aim to predict native three-dimensional
protein structures (see [2], [3], [4], [8], [9], [10], [12],
[14], [15], [18], [19], [20], [21], and [22]). Such meth-
ods assume that the native structure is a balance of var-
ious interactions. These methods invariably use some

form of energy minimization technique, such as simu-
lated annealing or genetic algorithms, rather than the
computationally more efficient continuous minimiza-
tion techniques. Each such method correctly predicts a
few protein structures, but misses many others, and the
process is both slow and limited to structures of rela-
tively small size.

The purpose of this paper is to show how one can
apply more efficient continuous minimization tech-
niques to the energy minimization problem by using
an accurate continuous approximation to the discrete
information provided for known protein structures. In
addition, we will show how the results of one particu-
lar computational method for protein structure predic-
tion (the CGU algorithm), which is based on this
continuous minimization technique, can be used both
to accurately determine the global minimum of poten-
tial energy function and also to offer a quantitative
analysis ofall of the local (and global) minima on the
energy landscape.

The CGU method has been extensively tested on a
variety of computational platforms including the Intel
Paragon, Cray T3D, an 8 workstation Dec Alpha clus-
ter, and a heterogeneous network of 13 Sun SparcSta-
tions and 7 SGI Indys. Protein structures with as many
as 46 residues have been computed in under 40 hours
on the 20 workstation heterogeneous network.

THE POLYPEPTIDE MODEL AND POTENTIAL ENERGY
FUNCTION

Since computational search methods are not yet fast
enough to find global optima in real-space representa-
tions using accurate all-atom models and potential
functions, a practical conformational search strategy
requires both a simplified, yet sufficiently realistic,
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molecular model with an associated potential energy
function representing the dominant forces involved in
protein folding. We also need a global optimization
method which takes full advantage of any special
properties of this kind of energy function.

Each residue in the primary sequence of a protein is
characterized by its backbone components NH-CαH-
C′O and one of 20 possible amino acid sidechains
attached to the central Cα atom. The three-dimensional
structure of macromolecules is determined by internal
molecular coordinates consisting of bond lengthsl
(defined by every pair of consecutive backbone
atoms), bond anglesθ (defined by every three consecu-
tive backbone atoms), and the backbone dihedral
anglesϕ, ψ, andω, where ϕ gives the position of C′ rel-
ative to the previous three consecutive backbone atoms
C′-N-Cα, ψ gives the position of N relative to the pre-
vious three consecutive backbone atoms N-Cα-C′, and
ω gives the position of Cα relative to the previous three
consecutive backbone atoms Cα-C′-N. Figure 1 illus-
trates this model.

Fortunately, these 9n-6 parameters (for ann-resi-
due structure) do not all vary independently. In fact,
some of these (7n-4 of them) are regarded as fixed
since they are found to vary within only a very small
neighborhood of an experimentally determined value.
Among these are the 3n-1 backbone bond lengthsl
between the pairs of consecutive atoms N-C′, C′-Cα,

and Cα-N. Also, the 3n-2 backbone bond anglesθ
defined by N-Cα-C′, Cα-C′−N, and C′-N-Cα are also
fixed at their ideal values. Finally, then-1 peptide bond
dihedral anglesω are fixed in the trans (180˚) confor-
mation. This leaves only then-1 backbone dihedral
angle pairs (ϕ,ψ) in the reduced representation model.
These also are not completely independent; they are
severely constrained by known chemical data (the
Ramachandran plot) for each of the 20 amino acid res-
idues. Furthermore, since the atoms from one Cα to the
next Cα along the backbone can be grouped into rigid
planar peptide units, there are no extra parameters
required to express the three-dimensional position of
the attached O and H peptide atoms. Hence, these
bond lengths and bond angles are also known and
fixed.

 A key element of this simplified polypeptide
model is that each sidechain is classified as either
hydrophobic or polar, and is represented by only a sin-
gle “virtual” center of mass atom. Since each
sidechain is represented by only the single center of
mass “virtual atom” Cs, no extra parameters are
needed to define the position of each sidechain with
respect to the backbone mainchain. The twenty amino
acids are thus classified into two groups, hydrophobic
and polar, according to the scale given by Miyazawa
and Jernigan in [11].

Corresponding to this simplified polypeptide model
is a simple energy function. This function includes
four components: a contact energy term favoring pair-
wise hydrophobic residues, a second contact term
favoring hydrogen bond formation between donor NH
and acceptor C′=O pairs, a steric repulsive term which
rejects any conformation that would permit unreason-
ably small interatomic distances, and a main chain tor-
sional term that allows only certain preset values for
the backbone dihedral angle pairs (ϕ,ψ). Since the res-
idues in this model come in only two forms, hydropho-
bic and polar, where the hydrophobic monomers
exhibit a strong pairwise attraction, the lowest free
energy state involves those conformations with the
greatest number of hydrophobic “contacts” (see [5])
and intrastrand hydrogen bonds. Despite its simplicity,
the use of this type of potential function has been suc-
cessful in studies by Sun, Thomas, and Dill [18] and
by Srinivasan and Rose [16]. The specific potential
function used initially in this study is a simple modifi-
cation of the Sun/Thomas/Dill energy function and has
the following form:
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Figure 1 Simple Polypeptide Model
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whereEex is the steric repulsive term which rejects any
conformation that would permit unreasonably small
interatomic distances,Ehp is the contact energy term
favoring pairwise hydrophobic residues,Ehb is the
contact energy term favoring pairwise hydrogen bond-
ing, and Eϕψ is the main chain torsional term that
allows only those (ϕ,ψ) pairs which are permitted by
the Ramachandran maps. In particular, the excluded
volume energy termEex and the hydrophobic interac-
tion energy termEhp are defined in this case as fol-
lows:

, and

 where

.

The excluded volume termEex is a soft sigmoidal
potential wheredij  is the interatomic distance between
two Cα atoms or between two sidechain center of mass
atoms Cs, dw determines the rate of decrease ofEex,
and deff determines the midpoint of the function (i.e.
where the function equals 1/2 of its maximum value).
Similarly, the hydrophobic interaction energy termEhp
is a short ranged soft sigmoidal potential wheredij  rep-
resents the interatomic distance between two sidechain
centroids Cs, and d0 and dt represent the rate of
decrease and the midpoint ofEhp, respectively. The
hydrophobic interaction coefficientεij  = -1.0 when
both residuesi and j are hydrophobic, and is set to 0
otherwise. Figure 2 shows the combined effect of the
energy termsEex + Ehp for a pair of hydrophobic resi-
dues.

The contact energy termEhb represents the attrac-
tion between backbone amides and carbonyls partici-
pating in a hydrogen bond. To determine this energy of
attraction, it is assumed that the most favorable hydro-
gen bond is one in which all of the bonded pairs C′/O,
O/H, and H/N lie along a straight line, since the ener-
gies between the pairs C′/H and O/N are repulsive
while the energies between C′/N and O/H are attrac-
tive (see Figure 3). If for theij th pair of carbonyl and
amide groups, we defined(1)

ij  to be the distance

between the C′ and H constituents,d(2)
ij  to be the dis-

tance between C′ and N, d(3)
ij  to be the distance

between O and H, andd(4)
ij  to be the distance between

the O and N, then the energy termEhb can be repre-
sented as follows (with an additional steric repulsive
energy term, not shown, between the O/H pair as
well):

,

where Eij1 = QCQH / d(1)
ij , Eij2 = QCQN / d(2)

ij , Eij3 =
QOQH / d(3)

ij , andEij4 = QOQN / d(4)
ij , and whereQC

= +0.5,QH = +0.3,QO = -0.5, andQN = -0.3 are the
charges on the four participating atoms. This energy
term is computed for all pairsij  of backbone amide
and carbonyl groups.

The final term in the potential energy function,
Eϕψ, is the torsional penalty term allowing only “real-
istic” (ϕ,ψ) pairs in each conformation. That is, sinceϕ
and ψ refer to rotations of two rigid peptide units
around the same Cα atom (see Figure 1), most combi-
nations produce steric collisions either between atoms
in different peptide groups or between a peptide unit
and the side chain attached to Cα (except for glycine).
Hence, only certain specific combinations of (ϕ,ψ)
pairs are actually observed in practice, and are often
expressed in terms of the Ramachandran plot, such as
the one in Figure 4. The ϕ-ψ search space is therefore
very restricted.

Etotal Eex Ehp Ehb Eϕψ+ + +=

Eex

C1

1.0 exp dij deff–( ) dw⁄( )+
---------------------------------------------------------------

ij
∑=

Ehp εij f dij( )
i j– 2>
∑=

f dij( )
C2

1.0 exp dij d0–( ) dt⁄( )+
----------------------------------------------------------=
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The Ramachandran restrictions help maintain rea-
sonable local conformations. To speed up the local
minimizations we require a differentiable function rep-
resenting the Ramachandran energies. Our approach
[7] is to model the Ramachandran data by a smooth
function which will have the approximate value zero
in any permitted region, and a large positive value in
all excluded regions.

A key observation in the construction of the func-
tion Eϕψ is that the set of allowable (ϕ,ψ) pairs form
compact clusters in theϕ-ψ plane. By enclosing each
such cluster in an appropriately constructed ellipsoid,
we may use the ellipsoids to define the energy term
Eϕψ. In particular, given p regions (ellipsoids) R1,
R2,..., Rp, containing the experimentally allowable
(ϕ,ψ) pairs (see Figure 5), we want the energy term
Eϕψ to satisfy

(1)

whereβ is some large constant penalty. To obtain such
an energy term, we first represent theith ellipsoid Ri by
a quadratic functionqi(ϕ,ψ) which is positive definite
(both eigenvalues positive) and satisfiesqi(ϕ,ψ) = 0 on
the boundary of the ellipsoid Ri, qi(ϕ,ψ) < 0 in the inte-
rior of Ri, andqi(ϕ,ψ) > 0 in the exterior. By simply
constructing a sigmoidal penalty term of the form

(2)

where the constantsγi > 0 determine the rate by which
Eϕψ approaches 0 orβ near an ellipsoid boundary, then
it is easy to see thatEϕψ ≅ 0 in the ellipsoid’s interior,
andEϕψ ≅ β at distant exterior points, thus satisfying
(1). Figure 6 showsEϕψ as a function ofqi(ϕ,ψ) for a

single ellipsoid with the values ofβ = 1 and γ1 = 5. Fig-
ure 7 illustrates the three-dimensional plot ofEϕψ (for
β = 1, and allγi = 100) for the data provided in Figure
4. This differentiable representation forEϕψ is crucial
for applying a continuous minimization technique to
the problem of computing the minimum potential

Figure 4 Typical Ramachandran Plot
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energy, and its use in the CGU algorithm, described
next, is a major reason for the speed of this method.

THE CGU GLOBAL OPTIMIZATION ALGORITHM

One computational method for finding the global min-
imum of the polypeptide’s potential energy function is
to use a global underestimator to localize the search in
the region of the global minimum. This CGU (convex
global underestimator) method, first described in [13]
and subsequently applied successfully to the molecu-
lar model and potential energy function described ear-
lier (see [6] and [7]), is designed to fit all known local
minima with a convex function which underestimates
all of them, but which differs from them by the mini-
mum possible amount in the discrete L1 norm (see
Figure 8). The use of such an underestimating function

allows the replacement of avery complex function by

a simple convex underestimator. For simplicity of
notation, we define the differentiable functionF(φ) ≡
Etotal, where φ ∈ Rτ (τ = 2n-2 represents the number of
backbone dihedral anglesϕ andψ), and whereF(φ) is
assumed to have many local minima.

To begin the iterative process, a set ofK ≥ 2τ+1 dis-
tinct local minimaφ(j), for j=1,...,K, are computed and
a convex quadratic underestimator functionΨ(φ) is
then fitted to these local minima so that it underesti-
mates all the local minima, and normally interpolates
F(φ(j)) at 2τ+1 points (see Figure 8). This is accom-
plished by determining the coefficients in the function
Ψ(φ) so that

for j=1,...,K, and where is minimized. That
is, the difference betweenF(φ) andΨ(φ) is minimized
in the discrete L1 norm over the set ofK local minima
φ(j), j=1,...,K. The underestimating functionΨ(φ) is
given by

(3) .

Convexity of this quadratic function is guaranteed
by requiring thatdi ≥ 0 for i=1,...,τ. Other linear com-
binations of convex functions could also be used, but
the coefficientsci and di of this particular quadratic
function provide various useful information related to
the energy landscape.

The convex quadratic underestimating function
Ψ(φ) determined by the valuesc ∈ Rτ+1 andd ∈ Rτ

provides a global approximation to the local minima
of F(φ), and its easily computed global minimum point
φmin is given by(φmin)i = -ci/di, i=1,...,τ, with corre-
sponding function valueΨmin given by

(4) .

The valueΨmin is a good candidate for an approxi-
mation to the global minimum of the correct energy
function F(φ), and soφmin can be used as an initial
starting point around which additional configurations
(i.e. local minima) can be generated. That is, the mini-
mum of this underestimator is used to predict the glo-
bal minimum for the true potential functionF(φ),

Figure 7 Three-Dimensional Plot ofEϕψ (for β = 1.0)
Corresponding to the Ramachandran Data in Figure 5
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Figure 8 The Convex Global
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allowing a more localized conformer search to be per-
formed based on the predicted minimum (see Figures
9 and 10). A new set of conformers generated by the

localized search then serves as a basis for another qua-
dratic underestimation over a sufficiently reduced
space. After several repetitions, the reduced space will
contain only a single conformation so that the convex
underestimator prediction agrees exactly with the best
known local minimum (see [13] for specific details).
This conformation thus has the minimum energy
among all conformations found by the algorithm, and
so it is taken to be the best approximation to the true
global minimum conformation.

THE NATIVE STRUCTURE AND ITS FLUCTUATIONS

The CGU method gives a very simple expression for
the fluctuations around the native structure. The proba-
bility P(φ(j)) of finding a molecule in a conformation
φ(j) is given by the Boltzmann distribution law

(5)

whereEj ≡ F(φ(j)) is the energy of the conformation
φ(j), E0 is the energy of the global minimum conforma-
tion φ(0), kT is Boltzmann’s constant multiplied by
temperature, andN ≥ K is the total number of confor-

mations that are local minima ofF(φ). Thus, higher
energy states are less probable than lower energy ones.

Note that the CGU method will find onlyK of theN
total local minima ofF(φ), and thatK « N is expected.
However, for thoseN-K local minima not found, the
corresponding energies are also expected to satisfyE »
E0, so that their effect on the total sum in (5) is negligi-
ble.

If (φ(j))i represents theith angle in thejth conforma-
tion, then the weighted mean of theith angle is given
by

and the corresponding mean square deviation in <φi>
is given by

.

Thus a small mean square deviation demonstrates the
increased reliability of <φi>. Also a small mean square
deviation should give <φi> ≈ (φ(0))i. If all such mean
square deviations are small, then the computed global
minimum angles(φ(0))i should give a good approxima-
tion to the true native conformation.

If the final convex underestimatorΨ(φ) agrees with
the global minimum potential energyE0 at the com-
puted global minimum conformationφ(0) (this condi-
tion can be easily assured by requiring thatci = -di
(φ(0))i for all i = 1,...,τ; that is, the gradient of the con-
vex underestimator vanishes at the computed global
minimum), thenE0 can be expressed, using (4), as

(6) .

Furthermore, with a suitable assumption1, combining
(3) and (6) shows that the convex underestimator
energyΨ(φ) of any conformationφ is related to the
computed global minimum energyE0 by

1. For each conformationφ(j), the CGU function valueΨ(φ(j))
matches the corresponding potential energy function Ej ≡
F(φ(j)). Even if this assumption is not satisfied, an upper bound
on the standard deviation given in (8) may be obtained.

Figure 9  A Reduced Search Domain
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.

Now, if φ(l) denotes a conformation with all anglesφi,
except forφl, fixed at their respective global minimum
values(φ(0))i, then the energy difference directly attrib-
uted to anyφl is clearly

(7) .

Finally, by applying (7) to (5), the Boltzmann distribu-
tion of angleφl is then proportional to (ignoring the
denominator in (5))

whereφl is the mean, andσl
2 is the variance. There-

fore, we can interpret(φ(0))l as the mean value ofφl,
andkT/dl as the variance ofφl obtained directly from
the convex global underestimator. Note that a large
value of dl implies a small variance in the angleφl.
Also a high temperatureT, as well as a small value of
dl, implies a large variance in the angle, as expected.
The standard deviation ofφl is

(8) σl = (kT/dl)
1/2.

Note that this result depends on the property that the
CGU algorithm computes a large set of local minima,
in addition to the global minimum.

COMPUTATIONAL SUMMARY

Using the chain representation, energy function, and
CGU search algorithm described above, we used eight
protein sequences as test cases (met-enkephalin,
bradykinin, oxytocin, mellitin, zinc-finger, avian pan-
creatic polypeptide, crambin, and BBA1 [17], a 23-
residueββα motif). These are test cases only insofar
as they provide sequences of amino acids we can
model having reasonable chain lengths. The structures
of some of these are not known. Our aim here is only
to see if we can reach the global minimum of the
mathematical model for each of these sequences.
While the CGU algorithm has been extensively tested
on a variety of high performance platforms including
the Intel Paragon, the Cray T3D, an 8 workstation Dec

Alpha cluster, and a heterogeneous network of 13 Sun
SparcStations and 7 SGI Indys, the results presented
here represent those obtained from the heterogeneous
network of Suns and SGIs using MPI (Message Pass-
ing Interface) for the interprocess communication. The
total time for solution and the computed global mini-
mum potential energy for each structure is given in
Table 1. Computations on the Cray T3D are in
progress and are expected to result in substantial
reductions in computing time.

The two principal results of this paper are: (1) to
show that starting from many different randomly cho-
sen open starting conformations of the chain, the CGU
method converges on the same structure in each case,
suggesting that the method is probably reaching the
global minimum of the energy function, and (2) to
show the scaling of the solution time with the chain
length (see Table 1), indicating that the method seems
practical for small protein-sized molecules. Table 2
shows that the simulations are dominated by a single
stable state for chains longer than about 20 residues.

This paper is a test of a conformational search strat-
egy, not an energy function. The energy function is not
yet an accurate model of real proteins: the best com-
puted structures differ from the true native structures.
But similarly simple energy functions have begun to
show value in predicting protein structures ([16], [18],
and [22]). Therefore we believe improved energy
functions used in conjunction with the CGU search
method may be useful in protein folding algorithms.
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Table 1  Eight Small Test Problems

compound (residues)
solution time

(minutes)
potential energy

(kcal/mol)

met-enkephalin (5) 1.6 -44.26

bradykinin (9) 4.0 -21.89

oxytocin (9) 8.3 -121.76

BBA1 (23) 334.5 -715.51

mellitin (27) 594.5 -903.76

zinc-finger (30) 422.6 -284.64

avian pancreatic
polypeptide (36)

834.3 -381.66

crambin (46) 2239.6 -734.94

Table 2  Probability Distribution of Local Minima

Number of Local Minima in Probability Range Shown

compound
(residues)

1-.8 .8-.6 .6-.4 .4-.2 <.2 Total

met-enkephalin (5) 1 1 4 6

bradykinin (9) 1 1 22 24

oxytocin (9) 1 20 21

BBA1 (23) 1 51 52

mellitin (27) 1 67 68

zinc-finger (30) 1 143 144

avian pancreatic
polypeptide (36)

1 132 133

crambin (46) 1 246 247


